
28 The Delphi Magazine Issue 46

A Delphi CGI File Uploader
by Paul Warren

There have been quite a few arti-
cles in this magazine dealing

with CGI programming. In all of
them data was submitted from
browser to server via URL encod-
ing. An HTML <FORM> element is
embedded in a document either
with the attribute:

ENCTYPE=
"application/x-www-urlencoded"

or with no attribute at all (where
ENCTYPEdefaults to the above). URL
encoding will serve most of our
needs, but not all. Is there any
other way to submit data? As it
turns out, there is. Form data can
be submitted with the attribute:

ENCTYPE="multipart/form-data"

There are many new, interesting
and potentially valuable things we
can do when form data is
submitted in this way.

In this first of a pair of articles
we’ll look at how we can upload
files to a web server. In the next
article we’ll create a useful utility
using what we learn here.

CGI Session Variables
Before we start building the CGI file
uploader we’ll quickly review CGI
programming. In his article
Developing Dynamic Web Pages in
Issue 16, Steve Troxell told us how

in standard CGI the ‘web server
communicates the parameters of
the CGI session to the CGI program
via environment variables.’

The CGI session parameters con-
stitute a session ‘header’. It’s the
CONTENT TYPE parameter of this
header that carries the ENCTYPE
variable we’re interested in.

The form data, or user input if
you prefer, is submitted through
the QUERY_STRING environment
variable when the form ACTION
parameter is GET and through the
standard input when ACTION is POST.
For file uploading only the POST
method is supported, since most
files are clearly too large to pass by
an environment variable.

Recognising that the session
parameters of the CGI session are
communicated to the CGI applica-
tion the same way regardless of the
ENCTYPE variable, it’s clear that we
can extend Steve’s TCGI compo-
nent to handle file uploads. All we
have to do is examine the CONTENT
TYPE variable and read the user
input according to the result.

RFC1867: Form-Based
File Upload In HTML
Once we have deter-
mined that data is being
submitted as multipart/
form-data how do we
read and decode it? Here
we must turn to the rele-
vant internet Request
For Comments. A quick
search revealed RFC
1867 which defines an
experimental protocol
for uploading files.

At its simplest, RFC 1867 calls for
each field of the form to be sepa-
rated by a boundary not found
elsewhere in the data. Between
boundaries each part has a header
and data separated by a blank line.
The header has at least a

content-disposition: form-data

line with the INPUT element name.
The data section has either the
VALUE variable or the binary data.
Listing 1 shows an example of a
multipart/form-data encoded
stream.

Notice the boundary is always
preceded by ‘- -’ and the final
boundary is followed by ‘- -’. We’ll
be using this information later.

If you’re interested in all the
details, I have included RFC 1867
with the code on this month’s disk.
Note that not all the recommenda-
tions were adopted. For instance,
RFC 1867 calls for multiple file
uploads, which are not imple-
mented on any browser I’ve tried.

With this brief description of
multipart/form-data encoding let’s
get down to business and start
creating our file uploader.

Extending TCGI
Steve Troxell’s TCGI component
read all the CGI session variables
into a TStringList called CGIItems.
If the form data is submitted as

application/x-www-urlencoded

we want TCGI to behave as Steve
originally designed it (Figure 1).
Only when data is submitted as
multipart/form-data should the

Content-type: multipart/form-data, boundary=AaB03x
--AaB03x
content-disposition: form-data; name="yourname"
John Doe
--AaB03x
content-disposition: form-data; name="yourfile"; filename="file1.txt"
Content-Type: text/plain
... contents of file1.txt ...
--AaB03x--

➤ Listing 1

➤ Figure 1

30 The Delphi Magazine Issue 46

component decode the multipart
stream. Listing 2 shows part of the
TCGI.Create constructor with the
commented modification which
checks the encoding type.

I have added a new CGI session
variable CONTENT BOUNDARY for con-
venience. We will need to use the
boundary variable later in parsing
the multipart stream. My routine
LoadMultiCGIUserData is called only
when CONTENT TYPE is multipart
form-data.

Parsing the multipart stream
looks rather simple. Unfortunately
it doesn’t follow all the conven-
tions of the MIME multipart/mes-

sage type that it is modelled on.
Specifically, the multipart/mes-
sage type that is used for email
with attachments calls for binary
data to be UU or Base64 encoded
before submission. This way the
receiving application can use a
readln inside a while not Eof loop
to read in the data. Parsing a
stream this way is very easy.

Multipart/form-data can include
binary data which obviously
excludes using readln. But since
the rest of the multipart stream is
CRLF delimited either readln or Pos
is needed to parse the fields. How
do we escape this paradox? The
best way to solve the problem is to
ignore it, at least for now.

Parsing The Multipart Stream
Steve Troxell parsed the user input
into a TStringList called FormItems
in his implementation of TCGI. We’ll
follow the same convention in our
extension of the component.

Let’s just assume the file being
sent is plain ASCII text. In this case
the pseudocode in Listing 3 would
work fine.

First we read a line from stan-
dard input. If the line is blank we
simply read another. If it is not
blank we enter an infinite loop.
Then we test the line to see if it is a
header. If it is we set labelstr and
break. Next we test to see if the line
is a boundary and if it is we break.
Finally, if neither condition is met
we append the line to valuestr and
read another line. By appending to
valuestr this way we can handle all
the INPUT types as well as the
TEXTAREA element.

Sooner or later we will encoun-
ter a header or boundary and
break the loop, at which time we
add the labelstr=valuestr pair to
FormItems. In the case of a text file
the value part of the label=value
pair will be the file. I suspect there
are limitations to the size of file
you could upload this way but it
does work. It still doesn’t help us
for binary files though.

If you look again at Listing 1
you’ll notice that the message part
containing the file has a Content-
Type: line in the header. If we test
for content-type in the while true
do loop we could set a boolean vari-
able to True indicating the next
content to be read is potentially
binary and break the loop. After we
read one more line which will be
blank we could then process the
data differently until we reach the
next boundary. Listing 4 shows
how this could be done.

We are nearly there. All we need
to do is find a replacement for the
while not Eof do loop and devise a
way to read the file contents up to
the next boundary.

End Of Message Detection
We saw earlier that the final
boundary has two hyphens added
to it. This is an excellent way to
decide when we have reached the
end of the message. When we test

case EnvironmentType of
etStdCGI :
begin
for I := 0 to NumCGIVars - 1 do
FCGIItems.Values[CGIVarNames[I]] := GetEnv(CGIVars[I, etStdCGI]);
// added by Paul Warren 03/99
if Pos('multipart/form-data', FCGIItems.Values['CONTENT TYPE']) <> 0 then
begin
FCGIItems.Values['CONTENT BOUNDARY'] := Copy(FCGIItems.Values[
'CONTENT TYPE'], Pos('boundary=', FCGIItems.Values[
'CONTENT TYPE'])+9, Length(FCGIItems.Values['CONTENT TYPE']));

LoadMultiCGIUserData;
end else
// end of addition
LoadStdCGIUserData;

end;
etWinCGI :
begin
for I := 0 to NumCGIVars - 1 do
FCGIItems.Values[CGIVarNames[I]] :=
WinCGIProfile.ReadString('CGI', CGIVars[I, etWinCGI], '');

LoadWinCGIUserData;
end;

end;

open standard input
while not Eof do begin
readln(line)
if line <> '' then begin
while true do begin
if line contains a header set labelstr = name and break
if line contains a boundary then break
append valuestr to line
readln(line)

end
end
if labelstr and valuestr <> ''
add labelstr=valuestr to FormItems

end

➤ Above: Listing 2 ➤ Below: Listing 3

open standard input
while not Eof do begin
readln(line)
if hascontent then begin
read data until boundary encountered
set hascontent = false

end
if line <> '' then begin
while true do begin
if line contains a header set labelstr = name and break
if line contains content-type set hascontent = true and break
if line contains a boundary then break
append line to valuestr
readln(line)

end
end
if labelstr and valuestr <> ''
add labelstr=valuestr to FormItems

end

➤ Listing 4

32 The Delphi Magazine Issue 46

for the presence of a boundary we
can also test for the remaining
hyphens. In this case we set Eom to
true and break the loop. Now
instead of testing for Eofwe test for
Eom in the main loop. When Eom is
true we close the standard input
and exit.

Unfortunately binary data can
contain an end of file marker and
even though we are no longer
testing for Eof, readln fails because
it thinks it is reading beyond the
end of the file. We will need a
replacement for readln before we
can finish.

A Readln Analog
I tried looking at the source for the
readln function for ideas, but it is

function read1ln(var Value: string): integer;
begin
Result := SearchBuf(#13#10, Buffer[0], ContentLength)+2;
SetLength(Value, Result);
Move(Buffer[0], Value[1], Result);
Move(Buffer[Result], Buffer[0], Length(Buffer)-Result);

end;

written in assembler, which may as
well be Greek for me. I do, however,
have an old modified Boyer-Moore
search algorithm I used for search-
ing binary files looking for various
byte sequences. Since the
Boyer-Moore algorithm is reputed
to be fast and efficient I thought I
would try using that in a readln
replacement.

Listing 5 shows the function
read1ln. I haven’t reproduced the
Boyer-Moore search algorithm
SearchBufhere since it’s on the disk
and it’s not really important to
understand at this point.

SearchBuf returns the location of
the first CRLF pair in Buffer. Next,
we need to set the length of the
variable Value to Result (plus two
for the CRLF pair). Then we move
Result bytes of Buffer to Value[1].
Finally we delete Resultbytes from
Buffer by moving Buffer[Result]
to Buffer[0].

You may be wondering where
Buffer came from. Well, we know
we can’t use readln on the stan-
dard input and Move doesn’t work
on file types so we need to

procedure TCGI.LoadMultiCGIUserData;
{ Reads, parses, and decodes values for the standard CGI
form variables in a multipart form. }

const
Eom: boolean = false;
HasContent: boolean = false;

var
ContentLength: LongInt;
InputFCB: File;
RequestMethod: string;
S: string;
LabelStr: String;
ValueStr: String;
Buffer: array of char;
AttachStream: TMemoryStream;
function read1ln(var Value: string): integer;
begin
Result := SearchBuf(#13#10, Buffer[0], ContentLength)+2;
SetLength(Value, Result);
Move(Buffer[0], Value[1], Result);
Move(Buffer[Result], Buffer[0], Length(Buffer)-Result);

end;
function readAttachment: integer;
begin
Result := SearchBuf(#13#10'--'+CGIItems.Values['CONTENT
BOUNDARY'], Buffer[0], ContentLength);

AttachStream.Write(Buffer[0], Result);
Move(Buffer[Result], Buffer[0], Length(Buffer)-Result);

end;
begin
RequestMethod :=
Uppercase(FCGIItems.Values['REQUEST METHOD']);

if RequestMethod = 'POST' then begin
if FCGIItems.Values['CONTENT TYPE'] <> '' then begin
ContentLength :=
StrToInt(FCGIItems.Values['CONTENT LENGTH']);

AssignFile(InputFCB, ''); { standard input }
Reset(InputFCB, 1);
try
SetLength(Buffer, ContentLength);
BlockRead(InputFCB, Buffer[0], ContentLength);
while not Eom do begin
read1ln(S); // read a line
if HasContent then begin
// if there is content...
AttachStream := TMemoryStream.Create;
try
// copy to memory stream
readAttachment;
// write file to disk
AttachStream.SaveToFile('c:\temp\'+
ChangeFileExt(ExtractFileName(
FFormItems.Values['FILENAME']),'')+
FloatToStr(TimeStampToMSecs(
DateTimeToTimeStamp(Time)))+ExtractFileExt(
FFormItems.Values['FILENAME']));

// save temp file name as form variable
FFormItems.Values['TEMPFILE'] :=
'c:\temp\'+ChangeFileExt(ExtractFileName(
FFormItems.Values['FILENAME']),'')+
FloatToStr(TimeStampToMSecs(
DateTimeToTimeStamp(Time)))+ExtractFileExt(
FFormItems.Values['FILENAME']);

finally
AttachStream.Free;

end;
HasContent := false;

end;
if S <> #13#10 then begin
while true do begin
if Pos('Content-Disposition', S) <> 0 then
begin
// delete to first "
System.Delete(S, 1, Pos('"', S));
// copy name
LabelStr := System.Copy(S,1,Pos('"',S)-1);
// delete name
System.Delete(S, 1, Pos('"', S));
if Pos('FILENAME', uppercase(S)) <> 0 then
begin
LabelStr := 'FILENAME';
// delete to filename
System.Delete(S, 1, Pos('"', S));
// copy value
ValueStr := System.Copy(S,1,Pos('"',S)-1);

end;
Break;

end;
if Pos('Content-Type', S) <> 0 then begin
LabelStr := 'CONTENT-TYPE';
// delete to :
System.Delete(S, 1, Pos(':', S)+1);
// copy name
ValueStr := System.Copy(S, 1, Length(S));
HasContent := true;
Break;

end;
if Pos(CGIItems.Values['CONTENT BOUNDARY'], S)
<> 0 then begin
// remove first 2 chars
System.Delete(S, 1, 2);
// check for Eom
System.Delete(S, 1, Length(CGIItems.Values[
'CONTENT BOUNDARY']));

if S = '--'#13#10 then Eom := true;
// lower has content flag if got here
HasContent := false;
Break;

end;
ValueStr := ValueStr + Copy(S, 1, Pos(#13#10,
S)-1); // append to valuestr

read1ln(S); // read another line
end;

end;
if ValueStr <> '' then begin
FFormItems.Values[LabelStr] := ValueStr;
LabelStr := '';
ValueStr := '';

end;
end;

finally
CloseFile(InputFCB);

end;
end;

end;
end;

➤ Listing 5

➤ Listing 6

June 1999 The Delphi Magazine 33

Next time we’ll
develop a useful appli-
cation using the
extended TCGI compo-
nent. Running on
what I refer to as an
infranet I’ll show you
how file uploads can
be used to process
files on your
standalone PC as well
as on the web or a cor-
porate intranet.

Postscript
Shortly after writing this article I
found out Netscape 3 doesn’t
follow the rules laid out in RFC
1867. Specifically, when the
browser can’t determine the con-
tent of a file being uploaded the
Content-type: line should default
to application/octet-stream. MS
Internet Explorer does this cor-
rectly. Netscape fails to include the
Content-type: line at all, causing
my code to fail for unregistered file
types. Rather than try to accommo-
date Netscape’s aberrant behavior
now I will defer a correction until
the next article.

Paul Warren runs HomeGrown
Software Development in
Langley, British Columbia, Canada
and can be contacted at
hg_soft@.uniserve.com

BlockRead the entire stream to a
Buffer. At last we have reached the
final step.

Reading The File
If and when we encounter a file in
the multipart stream we need to
read it into some kind of buffer and
save it to disk. Listing 6 is the full
source developed from our
pseudocode.

When the variable HasContent is
true we create a TMemoryStream and
call ReadAttachment, which works
like read1ln except that it searches
for the next boundary instead of
the next CRLF pair.

In order to make this extension
of TCGI as generic as possible we
will save the file under a unique file
name in a temporary directory.
This unique name is stored as a CGI
form variable TEMPFILE for calling
applications to access. The origi-
nal name is also extracted and
saved as the variable FILENAME (see
Figure 2).

TCGI is now capable of working
whether a form is submitted with
URL encoding or as a multipart
stream. Calling applications can
access CGI session variables and
form variables in the same way for
either case. If a file was submitted
the caller can access the file, move
it, process it or do whatever is
required.

Next Time
Parsing multipart form data turned
out to be a fair bit more difficult
than I thought it would be, but I
have already found many uses for
file uploads. They are not
restricted to the web or intranet
either.

➤ Figure 2

	CGI Session Variables
	RFC1867: Form-Based File Upload In HTML
	Extending TCGI
	Parsing The Multipart Stream
	End Of Message Detection
	A Readln Analog
	Reading The File
	Next Time
	Postscript

